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LETTER TO THE EDITOR
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Abstract. We obtain by transfer matrix scaling methods the Anderson metal–insulator phase
diagram for a random electronic tight binding Hamiltonian, modelling a ‘spaghetti’ of random
polymer chains having randomly placed cross-linksJ with concentrationc. If J is small and
c is large the results depend on the productJ · c as predicted by a mean-field approach. For
largeJ and smallc this dependence breaks down as a result of the large off-diagonal disorder
introduced by the random cross-linkings. The localization length critical exponent in this highly
anisotropic model takes the universal three-dimensional valueν = 1.3 ± 0.2.

In spite of several decades of intensive research, the field of strong localization (i.e. of
disorder-induced transition from propagating to trapped waves) is still open to question.
The reason is the lack of conclusive experiments and the absence of rigorous theoretical
results even in the most simplistic models. It is still of interest to look for new materials
which exhibit controllable disorder-induced (also referred to as Anderson) metal–insulator
transitions (MIT) and for models allowing rigorous results. Recently, attention has been
focused on the highly conducting conjugated polymers which seem to undergo a MIT driven
by disorder. Relevant experimental results on these materials are accumulating [1, 2, 3] and
a theoretical treatment [4] was recently developed via a rather realistic model, which extends
and enriches the widely used basic Anderson model [5].

In conducting conjugated polymers, disordered chains couple into fibrils which in turn
form a cross-linked network. The most prominent characteristic concerning their electronic
properties is the high conductivity obtained upon doping [1, 2, 3]. On the other hand,
the experimental observations in highly doped (CH)x polymer fibrils [2] reveal a negative
magnetoresistance, which agrees with the fact that for an individual fibril the presence of
structural defects and dopant ions will eventually result in localization of its electronic
states. It is only when electron transfer is permitted among the fibrils that extended states
and conducting properties may appear, which is experimentally seen as a change of sign in
the magnetoresistance. Therefore, one expects to obtain an Anderson MIT by varying the
degree of disorder and/or the concentration of the cross-links and/or the hopping probability
between the random chains. In fact, as recent experiments [1, 2, 3] suggest, the highly
conducting conjugated polymers are very close to the MIT boundary.

We propose a very simplified model for the cross-linked polymer network which,
nevertheless, incorporates the interchain hopping and has theoretical interest of its own
because it exhibits novel and unexpected behaviour for certain regions of values of the
parameters. The random interchain linking restores the three-dimensional (3D) nature of
the system but at the expense of an additional strong off-diagonal disorder. It is exactly
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the conflicting aspects of the 3D connectivity and the off-diagonal disorder which make
the model very interesting and limit the applicability range of the MFT [4]. We treat
the conjugated polymers as quasi-one-dimensional systems consisting of coupled linear
chains [9], by introducing an anisotropic tight-binding simple cubic lattice with one orbital
per site indexed byl, n, m. The diagonal matrix elementsεl,n,m are independent random
variables having a rectangular probability distribution of total widthW and the nearest-
neighbour intrachain (longitudinal) hopping matrix elementV is taken as the unit of energy.
The nearest-neighbour interchain (perpendicular) hopping matrix element is equal toJ with
probability c and zero with probability 1− c. Thus, the concentration of junctions per
unit length isp = 4c/a, where a is the lattice spacing taken as the length unit. For
c = 0 the random chains uncouple and the one-dimensional (d = 1) limit is recovered
where no extended states are expected. Thec = 1 limit, instead, corresponds to the
usuald = 3 isotropic forJ = 1 or anisotropic forJ 6= 1 disordered solid, for which an
Anderson transition exists at a finite value of the disorder [8]. Therefore, our model has
four parameters: the usual on-site (diagonal) disorder whose strength is denoted byW ,
the energyE, the concentrationc of the cross-links between the chains and the interchain
transfer matrix elementJ . Our aim is to determine the position of the Anderson MIT and
also to obtain the corresponding critical behaviour in order to treat with confidence regions
in the parameter space inaccessible to the MFT approach of [4].

The difference equations obeyed by the amplitudesαl,n,m, for a bar of lengthL and
square cross-sectionM × M, take the form

(E − εl,n,m)αl,n,m = V (αl−1,n,m + αl+1,n,m) + J
′l,n−1,m
l,n,m αl,n−1,m + J

′l,n+1,m
l,n,m αl,n+1,m

+J
′l,n,m−1
l,n,m αl,n,m−1 + J

′l,n,m+1
l,n,m αl,n,m+1 (1)

with P(ε) = 1/W for |ε| < W/2 andP(J ′) = cδ(J ′ − J ) + (1 − c)δ(J ′), l = 1, 2, ...., L,
n, m = 1, 2, ...., M. It can be shown analytically and verified numerically [6, 7, 8] that the
quantity〈ln |α1,n,m/αL,n,m|〉 for L → ∞ equals eitherγiL or −γiL, with i = 1, 2, . . . , M2.
These define the Lyapunov exponents 06 γ1 6 γ2 . . . 6 γM2, which are functions of
E, W, c, J andM. If the smallest exponentγ1 > 0, the corresponding eigenstate is localized,
for the given bar, with a localization lengthλM equal to the inverse,γ −1

1 . The Lyapunov
exponents can be obtained numerically [6, 7, 8] from the eigenvalues of theL → ∞
product of the consecutive transfer matrices connecting theαl−1,n,m, αl,n,m, n, m = 1, . . . M

amplitudes with theαl,n,m, αl+1,n,m(n, m = 1, ...M), for eachl. In the numerical workL
was sufficiently large (at least 5000) andλM was computed as an average over 20 different
samples. The numerical error is given by the standard deviation of the corresponding mean
value which was required to be less than 1% in most cases. More details on how the
numerical work is done and the scaling curves computed will appear in a forthcoming
publication [10].

According to the checked one-parameter scaling hypothesis, the quantityλM/M for
sufficiently largeM is a function ofM/λ only, where theM-independent characteristic
lengthλ equals the localization lengthλ ≡ lim λM asM → ∞, if the states are localized
and characterizes the extent of the largest amplitude fluctuation if the states are extended.
In the case of large anisotropy we found that quite large values ofM were needed in order
to obtain reliable results, so it was essential to extend our numerical calculations up to
M = 17. In the localized regimeW > Wc(E, J, c) and for sufficiently largeM we find that
λM/M is a decreasing function ofM, while in the extended regimeW < Wc(E, J, c) it
rises withM. At the critical pointW = Wc, the ratio is a constant(λM/M)c. Following the
numerical procedure outlined above, we determined the critical value ofWc = Wc(E, c, J ),
the (λM/M)c and the critical exponentν defined from the relationλ ∼ |W − Wc|−ν as
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Figure 1. Critical points of the metal–insulator transition according to the present calculations
are compared with the results of [4] (solid line). See text for the definition of the various
symbols.

W → Wc, via the reciprocal of the slope of the linear relationship between the ln
[

d(λM/M)

dW

]
and lnM at W = Wc [10].

We attempt to compare our results for theWc = Wc(E, c, J ) with the ρ versusα

phase diagram shown in figure 2 of [4], whereρ = 4pRloc andα ≡ (πν̃J )2 with Rloc the
localization length of the fibril,̃ν the density of states per unit of fibril length andp = 4c.
It should be noted that this should be, at most, a semi-quantitative comparison since in our
model the fibrils are replaced by single chains. As a result, the density of statesν̃ must
be replaced by its 1D valuẽν1, which may differ substantially from̃ν, especially for weak
disorder and near the band edge. Moreover, the fibril localization lengthRloc = 2πh̄ν̃D,
where D is the diffusion coefficient of the fibril. If the number of chains in the fibril
approaches one and the disorder is weak,Rloc becomes less than the one-dimensional
localization lengthλ by a factor of 3.75 at the band centre and 6 at the band edge. In
order to make a more meaningful comparison with the MFT we have taken into account
this factor, so thatρ ≡ 4cλ and α ≡ (πν̃1J )2 without any adjustment, are used in the
comparison.

In figure 1 our results for theρ versusα phase diagram are shown. IfJ 6 V the data are
in qualitative agreement with those of [4], in the sense that the four parametersW, c, E and
J have collapsed into two, namelyρ andα, and the obtained critical lineρ = f (α) follows
reasonably well (given the differences of the two models) the trends of the analytical curve
of [4]. Furthermore, for smallerJ this agreement extends beyond the regime(4c)2 � 1,
corresponding to the inequality (1) of [4], in agreement with the conjecture of Prigodin and
Efetov that it should be qualitatively correct for the whole region of parameters. However,
for largeJ and smallc (in fact, when(1 − c)J 2 � V 2) strong qualitative departures from
the MFT appear. In this large-J regime, which starts from lower values ofJ if c becomes
smaller, by increasingJ the states become more easily localized instead of more extended.
This is shown in figure 1 where the critical points turn upwards for largeα and become
more scattered. It must be also pointed out that our results seem to be in a reasonable
agreement, for the whole region of parameters, with a recent non-linearσ -model approach
for the same model [11].
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Figure 2. The critical value of the disorderWc at the band centreE = 0 as a function ofJ is
shown for three different concentrationsc.

In figure 2 the critical value of the disorderWc atE = 0 is plotted againstJ for different
values ofc. It is shown that for very large values ofc approaching oneWc is monotonically
increasing withJ (if J 6 10 ). If c is smaller thenWc reaches a maximum asJ increases
from zero toJm(c) and beyond this value it decreases monotonically withJ . The reason
for this rather unexpected behaviour, already indicated for largeα in figure 1, is due to
the dual role played byJ . This provides alternative paths for propagation (transforming
the one-dimensional system to a quasi-three-dimensional system by increasing the critical
disorder required for localization) and on the other hand, forc 6= 1, it creates an additional
scattering mechanism in the form of off-diagonal disorder which facilitates localization. For
large values ofJ and 1− c, the second role dominates leading to a decreasingWc with J .
We have also calculated [10] the critical exponentν and the critical value of(λM/M)c, for
various sets of parameters. We find thatν takes the universal value 1.3± 0.2 independently
of c andJ/V while for the isotropic case transfer matrix results giveν = 1.4± 0.3 even in
the presence of a random magnetic field in three dimensions [17]. There is no experimental
estimate ofν for conjugated polymers, to the best of our knowledge.

In [4] it was speculated that the critical line for a given energyE has the form

J · c = f (Wc) (2)

with the productJ · c playing the role of an effective bandwidth in the transverse direction.
This is close to our results, for not so large(1 − c)J 2. For J 6 V we found the simple
expression

Wc ≈ 16V 1−κJ κcµ (3)

with both κ andµ around 0.5 (e.g. forJ = V the exponent isµ = 0.53± 0.03 while for
J = 0.3V it is µ = 0.43± 0.03). It is worthwhile to mention that previous self-consistent
[12] and perturbative calculations [16] performed in the context of an anisotropic lattice
Hamiltonian [12–16] gaveµ = 1/2. However, forJ � V and smallc, (2) is clearly
violated as shown in figure 3. Indeed theJ · c dependence of the critical value,Wc, in this
regime is quite complicated. On the basis of the physical arguments for the dual role ofJ
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Figure 3. TheJ · c dependence of the critical disorderWc at the band centreE = 0 for various
values ofJ (inset: detail of the regionJ · c 6 0.4).

we expect that theW in (2) should be replaced by an effective total disorderW̃ such that

W̃ 2 = g(W 2; J 2(1 − c)) (4)

whereW̃ is an increasing function of both the pure diagonal disorderW and the induced
effective diagonal disorderJ 2(1 − c). If J is not so large one might assume an additive
relationship, i.e.W̃ 2 = W 2 + A(1 − c)J 2, whereA does not depend onJ .

In summary, we studied via a reliable numerical technique the electronic propagation in
a model incorporating the essential features of disordered cross-linked conjugated polymers
and exhibiting very interesting behaviour of its own. In this model, the polymer chains are
represented by linear tight-binding disordered chains, coupled by randomly placed interchain
matrix elements with concentrationc, having magnitudeJ . These matrix elements establish
the 3D character in the model, at the expense of introducing strong off-diagonal disorder.
For smallJ and largec, our results seems to confirm the validity of a recent MFT [4],
which essentially replaces the off-diagonal random matrix element by its averageJ · c. For
largeJ and smallc the MFT breaks down and the critical point is not only a function of the
productJ · c as proposed in [4]. However, the MFT quasi-universality, in the sense that the
four parametersJ, c, E andW collapse into two, may also be valid in the large-J , small-c
regime where large fluctuations in the numerical results are shown (figure 1). However,
there is a better agreement, even in theα � 1 regime, with recent analytical results based
on a non-linearσ -model approach [11]. Moreover, the obtained localization length critical
exponentν = 1.3 ± 0.2 is consistent with the value obtained in the usual 3D isotropic
Anderson model within numerical errors. Many interesting questions remain open in this
area, such as the extension of our model to describe the fibrils more realistically (not as
single chains) and the inclusion of a magnetic field.
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